

Available online at www.sciencedirect.com



*Journal of* Hazardous Materials

Journal of Hazardous Materials 152 (2008) 1164-1170

www.elsevier.com/locate/jhazmat

# Calcium peroxide (CaO<sub>2</sub>) for use in modified Fenton chemistry

Abraham Northup, Daniel Cassidy\*

Geosciences Department, Western Michigan University, 1187 Rood Hall, Kalamazoo, MI 49008, USA

Received 2 May 2007; received in revised form 6 July 2007; accepted 28 July 2007

Available online 2 August 2007

# Abstract

The use of calcium peroxide  $(CaO_2)$  powder as a source of  $H_2O_2$  to promote modified Fenton (MF) chemistry was studied. First, the rate of production and yield of  $H_2O_2$  from CaO<sub>2</sub> dissolving in water at pH 6–9, and 12–13 (i.e., unbuffered CaO<sub>2</sub>) was measured. The rate of CaO<sub>2</sub> dissolution increased as pH decreased, from 62 h for complete dissolution at pH 12–13 to only 4 h at pH 6. The yield of  $H_2O_2$  also increased with decreasing pH, from zero at pH 12–13 to 82% at pH 6. The ability of CaO<sub>2</sub> to promote MF oxidation of PCE was demonstrated with a hydroxyl radical (•OH) scavenger (2-propanol) at pH 8. The scavenger inhibited PCE oxidation, but 97% of the PCE was oxidized without it. Release of Cl<sup>-</sup> showed that PCE was mineralized. Finally, PCE oxidation was compared with liquid  $H_2O_2$  (pH 7) and with CaO<sub>2</sub> (pH 6, 7, 8, 9). Liquid  $H_2O_2$  showed the lowest efficiency (mol  $H_2O_2$  consumed/mol PCE oxidized) and the greatest temperature increase, disproportionation to  $O_2$ , and PCE volatilization. CaO<sub>2</sub> was a more efficient oxidant than liquid  $H_2O_2$  at all pH values because it only releases  $H_2O_2$  upon dissolution, reducing the loss to  $O_2$  and volatilization. CaO<sub>2</sub> performed optimally at pH 8.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Calcium peroxide; Hydrogen peroxide; Hydroxyl radical; Modified Fenton; PCE

# 1. Introduction

Fenton chemistry involves the catalyzed decomposition of  $H_2O_2$  by Fe<sup>2+</sup> to form the hydroxyl radical (•OH) (reaction (1)), a strong and relatively indiscriminate oxidant that reacts with most contaminants at near diffusion-limited rates [1]. Conventional Fenton chemistry, used primarily to treat waters and wastewaters, uses excess Fe<sup>2+</sup> and meters in limiting amounts of H<sub>2</sub>O<sub>2</sub>, which results in nearly stoichiometric (1:1) conversion of H<sub>2</sub>O<sub>2</sub> to <sup>•</sup>OH. Conventional Fenton chemistry also maintains a pH below 3, which is impractical in the subsurface because of the buffering capacity of geologic materials. As a result, in situ chemical oxidation (ISCO) applications typically use modified Fenton (MF), or Fenton-like chemistry, which operates at circum-neutral pH [2]. In MF-ISCO, iron can be added as salts of  $Fe^{2+}$  or  $Fe^{3+}$  [3], or native iron-containing minerals (e.g., goethite, ferrihydrite) can be used [4,5]. If insufficient  $Fe^{2+}$  is added, or if only Fe<sup>3+</sup> is originally present, the Fe<sup>2+</sup> in reaction 1 is regenerated by various reactions [6]. The low solubility of Fe<sup>3+</sup> at neutral pH requires chelants (e.g., EDTA) to increase

0304-3894/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2007.07.096 Fe<sup>3+</sup> in the aqueous phase [7,8]. High concentrations of  $H_2O_2$  are injected during MF-ISCO to ensure a sufficient radius of influence [2]. As such, MF-ISCO is conducted under conditions of limiting Fe and excess  $H_2O_2$ , the opposite of conventional Fenton chemistry.

$$H_2O_2 + Fe^{2+} \rightarrow \bullet OH + OH^- + Fe^{3+}$$
(1)

$$2H_2O_2 \rightarrow H_2O + O_2 \tag{2}$$

$$CaO_{2(s)} + 2H_2O \rightarrow H_2O_2 + Ca(OH)_{2(s)}$$
(3)

The instability of H<sub>2</sub>O<sub>2</sub> in the subsurface is the most serious limitation of MF-ISCO. Liquid H<sub>2</sub>O<sub>2</sub> (2–12%) is typically injected in ISCO [2], but its half-life is only minutes to hours [9]. Disproportionation (reaction (2)) constitutes the major loss of H<sub>2</sub>O<sub>2</sub> at neutral pH [10,11]. It consumes H<sub>2</sub>O<sub>2</sub> without producing •OH, and releases O<sub>2</sub> gas which clogs pores around injection wells and promotes contaminant volatilization [12,13]. Reaction (2) is catalyzed by metals, catalase and peroxidase enzymes, and native organic matter [2]. Reaction 2 is quite exothermic ( $\Delta G^{\circ} = -119.2$  kJ/mol) [14], and as temperature rises it is favored over reaction (1) [15]. This positive feedback cycle can rapidly degrade all available H<sub>2</sub>O<sub>2</sub> to O<sub>2</sub>. Phosphate is often used as a stabilizer [16], and supposedly works by

<sup>\*</sup> Corresponding author. Tel.: +1 269 387 5324; fax: +1 269 387 5513. *E-mail address:* daniel.cassidy@wmich.edu (D. Cassidy).

precipitating metals and forming stable complexes with  $H_2O_2$  [17]. However, even high phosphate concentrations do little to reduce the loss of  $H_2O_2$  to  $O_2$  in the presence of Fe(III) at pH 7 [11,17].

Recent studies suggest that calcium peroxide (CaO<sub>2</sub>) is a more effective source of  $H_2O_2$  for ISCO than liquid  $H_2O_2$ [18,19]. Although other compounds exist which can release H<sub>2</sub>O<sub>2</sub> (e.g., Na<sub>2</sub>CO<sub>3</sub>, MgO<sub>2</sub>), CaO<sub>2</sub> was chosen for these studies because it is relatively inexpensive and has a long history of application to site remediation, mostly as an oxygen releasing compound. CaO<sub>2</sub> dissolves to form H<sub>2</sub>O<sub>2</sub> and Ca(OH)<sub>2</sub> via reaction (3), liberating a maximum of 0.47 g  $H_2O_2/g\ CaO_2$  [20] and heat ( $\Delta G^{\circ} = -20.7 \text{ kJ/mol}$ ) [21]. The advantage is that H<sub>2</sub>O<sub>2</sub> release is auto-regulated by the rate of CaO2 dissolution, reducing disproportionation since not all the  $H_2O_2$  is available at once as with liquid H<sub>2</sub>O<sub>2</sub>. Technical grade CaO<sub>2</sub> powder (50%  $CaO_2/50\%$  Ca(OH)<sub>2</sub>) is the least expensive form, and is injected as a slurry in water. Aquifers are less permeable to solids than liquids, but this may not be a disadvantage relative to liquid H<sub>2</sub>O<sub>2</sub> because disproportionation also clogs pores [12].

Evaluating the utility of CaO<sub>2</sub> in MF chemistry is difficult because the literature is lacking in controlled studies on the rate of dissolution of  $CaO_2$  in water and the yield of  $H_2O_2$ . Because  $CaO_2$  has been used mostly to release  $O_2$  for bioremediation there is confusion in the literature about its behavior with regard to  $H_2O_2$  production, and it has even been postulated that  $O_2$  is formed directly from CaO<sub>2</sub> instead of  $H_2O_2$  [22]. Varying pH is the main reason for the conflicting information. Unless a buffer is added the pH increases to 12–13. However, the rate of CaO<sub>2</sub> dissolution and the stability of H<sub>2</sub>O<sub>2</sub> increase with decreasing pH. Arienzo [23] reported that the concentration of  $H_2O_2$  in a 0.2% slurry of CaO<sub>2</sub> increased from 380 mg/L to 1200 mg/L as the pH was decreased from 11 to 3. Rates of dissolution were not reported. White et al. [24] and Cassidy and Irvine [25] measured  $O_2$  release for 2 months in soils with unbuffered  $CaO_2$ , but Ndjou'ou and Cassidy [19] showed that CaO2 was exhausted within 2 days at pH 8. The instability of H<sub>2</sub>O<sub>2</sub> at high pH makes it impossible to identify as an intermediate. It is also difficult to distinguish biological from chemical oxidation of contaminants since both are oxidative processes with the same products. This difficulty is exacerbated by recent findings that aerobic biodegradation co-exists with MF oxidation of contaminants in soils, even at high doses of liquid  $H_2O_2$  [26].

The ability of CaO<sub>2</sub> to produce •OH has not yet been demonstrated. Ndjou'ou and Cassidy [19] compared the treatment of a soil contaminated with petroleum hydrocarbons using a commercially available CaO<sub>2</sub>-based oxidant and liquid H<sub>2</sub>O<sub>2</sub> at pH of 8. CaO<sub>2</sub> removed 96% of total petroleum hydrocarbons (TPH), compared with 74% using liquid H<sub>2</sub>O<sub>2</sub>. Since a biological control showed only 30% reduction, they concluded that the TPH removal in the test reactors was due to MF oxidation. This study indicated that CaO<sub>2</sub> was a more efficient source of H<sub>2</sub>O<sub>2</sub> for MF chemistry than liquid H<sub>2</sub>O<sub>2</sub>. Bogan et al. [18] also reported that CaO<sub>2</sub> performed better than liquid H<sub>2</sub>O<sub>2</sub> in removing polycyclic aromatic hydrocarbons (PAH) from soil. However, these two studies did not demonstrate •OH-mediated MF oxidation. This research is the first to demonstrate that CaO<sub>2</sub> can promote MF oxidation of contaminants. First, the yield of  $H_2O_2$ from CaO<sub>2</sub> and the time required for dissolution was determined at various pH values. Second, a •OH scavenger (2-propanol) was used to show that the observed oxidation of tetrachloroethene (PCE) by CaO<sub>2</sub> at pH 8 was due to the production of •OH. Finally, the performance of MF oxidation of PCE using liquid  $H_2O_2$  (pH=7) and CaO<sub>2</sub> (pH=6, 7, 8, and 9) was compared in closed reactors. Temperature was monitored, and PCE volatilization and disproportionation of  $H_2O_2$  to O<sub>2</sub> were quantified. Oxidant efficiency (mmol  $H_2O_2$  consumed/mmol PCE oxidized) was calculated directly for  $H_2O_2$ , and estimated for CaO<sub>2</sub> using the yield of  $H_2O_2$  measured at each pH value in the first set of experiments.

# 2. Materials and methods

#### 2.1. Materials

Technical grade CaO<sub>2</sub> (50% CaO<sub>2</sub>/50% Ca(OH)<sub>2</sub>) and liquid H<sub>2</sub>O<sub>2</sub> (50%) were provided by Nippon (Tokyo, Japan). Tetrachloroethene (PCE) (99.9%), 2-propanol (99.9%), and hexane (99.9%) were purchased from Acros Organics (Pittsburgh, PA). Anhydrous disodium ethylenediaminetetraacetate (EDTA) (99%) (C<sub>10</sub>H<sub>14</sub>O<sub>8</sub>N<sub>2</sub>Na<sub>2</sub>), anhydrous ferric sulfate (Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>), monosodium phosphate monohydrate (NaH<sub>2</sub>PO<sub>4</sub>·H<sub>2</sub>O) and disodium phosphate heptahydrate (Na<sub>2</sub>HPO<sub>4</sub>·7H<sub>2</sub>O) were purchased from Aldrich (Milwaukee, WI).

# 2.2. Reactor set-up

The 4L Pyrex reaction vessels used in these studies had a maximum liquid volume of 2L. The contents were mixed with a magnetic stirrer at maximum speed. The reactors were kept in a temperature controlled room at 10 °C to simulate groundwater temperatures in northern climates [27]. No thermal insulation was used around the reactors. Each reactor had a custom-fitted lid with four ports. Three of the ports housed dedicated probes to measure pH, temperature, and dissolved  $O_2$  (DO). The use of the fourth port was different for each study. During the studies on H<sub>2</sub>O<sub>2</sub> yield from CaO<sub>2</sub>, the fourth port was open. In the •OH scavenging study of PCE oxidation, the fourth port vented to the atmosphere and was fitted Supleco ORBO® (activated carbon) tubes to trap and quantify PCE volatilized. Three tubes were placed in series to ensure that PCE did not breakthrough. For the studies comparing MF oxidation of PCE with H<sub>2</sub>O<sub>2</sub> and CaO<sub>2</sub> the ORBO® tubes were again used to capture PCE, but the were connected to a 1 L Tedlar<sup>®</sup> gas sampling bag to collect and quantify the O<sub>2</sub> released. Each gas sampling bag had a polypropylene valve and septum fitting to measure air pressure and draw samples. The gas bags were vacuum-emptied before being fitted on the reactors. The reactor set-up was pressure tested by injecting air into the bags, and was capable of maintaining a pressure of 2 atm for 3 months. Since the highest pressure measured in the studies was 1.24 atm, the reactor set-up was deemed suitable for capturing and quantifying O<sub>2</sub> released.

Table 1 Concentrations of buffers used to maintain the desired pH values during testing with CaO\_2 and  $\rm H_2O_2$ 

| pН                 | NaH <sub>2</sub> PO <sub>4</sub> ·H <sub>2</sub> O<br>(g/L) | Na <sub>2</sub> HPO <sub>4</sub> ·7H <sub>2</sub> O<br>(g/L) | Buffer<br>strength (mM) |
|--------------------|-------------------------------------------------------------|--------------------------------------------------------------|-------------------------|
| 6                  | 12.1432                                                     | 3.2176                                                       | 100                     |
| 7                  | 2.9181                                                      | 7.733                                                        | 50                      |
| 8                  | 0.1884                                                      | 4.994                                                        | 20                      |
| 9                  | 0.01                                                        | 2.6605                                                       | 10                      |
| 12–13 <sup>a</sup> | None                                                        | None                                                         | None                    |

<sup>a</sup> The pH of a 0.2% (w/v) slurry of unbuffered technical grade CaO<sub>2</sub> in water.

#### 2.3. Buffer solutions and doses of modified Fenton reagents

Buffer solutions used in the reactors were made in de-ionized water using NaH<sub>2</sub>PO<sub>4</sub>·H<sub>2</sub>O and Na<sub>2</sub>HPO<sub>4</sub>·7H<sub>2</sub>O. Table 1 shows the pH values tested, the doses of  $NaH_2PO_4 \cdot H_2O$  and  $Na_2HPO_4 \cdot 7H_2O$  used (in g/L), and the buffer strength (in mM). Each reactor had a 2L of the appropriate buffer. Preliminary testing verified that each buffer solution was able to maintain the desired pH with the dose of  $CaO_2$  and other reagents used. The dose of CaO<sub>2</sub> for all reactors was 4 g technical grade powder, resulting in a 0.2% slurry (w/v). With a purity of 50%, the actual mass of CaO<sub>2</sub> added to each reactor was 2 g, or 1 g  $CaO_2/L$ . According to Eqs. (2) and (3), the 2 g of  $CaO_2$  added per reactor contain a maximum theoretical mass of O<sub>2</sub> of 444.0 mg (13.88 mmol  $O_2$ ), and a maximum theoretical mass of  $H_2O_2$  of 943.4 mg (27.76 mmol  $H_2O_2$ ), or 472 mg  $H_2O_2/L$  (13.88 mM  $H_2O_2$ ). In the experiments on  $H_2O_2$  yield only CaO<sub>2</sub> was added to the buffers. In the studies with PCE, each reactor also received 80 mg of Fe(III) to promote MF chemistry via reaction (1), and 40 mg EDTA to chelate the Fe so that it will be more available to participate in reaction 1. The reactor testing liquid H<sub>2</sub>O<sub>2</sub> in the comparative studies received a dose of  $27.76 \text{ mmol } H_2O_2$ (13.88 mM), the maximum theoretical amount contained in the 2 g dose of CaO<sub>2</sub>.

# 2.4. Sample handling and preparation for PCE analyses

PCE was extracted from duplicate 10 mL unfiltered samples of reactor liquid with 2 mL of hexane by mixing in 25 mL screwcap test tubes on a wrist action shaker for 6 h. After centrifuging, the hexane was extracted with a syringe and placed in 2 mL vials for PCE analyses. PCE trapped in the ORBO<sup>®</sup> tubes was extracted in the same fashion by sacrificing each tube in 2 mL of hexane and 10 mL of added de-ionized water.

#### 2.5. Analyses

All analyses were done in duplicate.  $H_2O_2$  was only measured in the aqueous phase, which is justified by its complete miscibility in water and low volatility (W.T. Hess, 1995).  $H_2O_2$  was measured in the filtrate from 10 mL samples from the reactors passed through a 0.45  $\mu$ m filter. The  $H_2O_2$  was quantified using a Hach DR5000 spectrophotometer after color was developed with titanium sulfate [15]. The detection limit for  $H_2O_2$  was 0.04 mM. The pH was monitored continuously with an

Orion probe and meter. Temperature was also measured continuously with a Vernier stainless steel probe. The DO was measured before oxidant addition and after oxidation was complete using a YSI Instruments probe. A water manometer was used to measure air pressure in the gas bags after chemical oxidation was complete. Duplicate 25 mL gas samples were then taken from the sampling bags and injected into an Illinois Instruments-3600  $O_2$  Analyzer to measure  $O_2$ . The  $O_2$  analyzer was calibrated between 20% and 30%  $O_2$ . Cl<sup>-</sup> was measured in samples of reactor filtrate with a Thermo Orion specific probe.

PCE was analyzed in duplicate hexane extracts using a Hewlett-Packard 6890 gas chromatograph (GC) with electron capture detection and a DB-1 fused-silica capillary column ( $15 \text{ m} \times 0.317 \text{ mm i.d.}, 0.25 \mu \text{m film thickness}$ ). The oven was at 40 °C for 5 min, and increased 5 °C/min to 130 °C. The injector and detector were at 240 °C and 350 °C, respectively.

# 2.6. Measuring $O_2$ released from $CaO_2$ and $H_2O_2$

The total amount of  $O_2$  released was determined by adding the amount of  $O_2$  released from  $CaO_2$  or  $H_2O_2$  to the aqueous phase and the gas phase, and subtracting from this the amount of  $O_2$ originally present in the reactor. The initial amount of aqueousphase  $O_2$  was calculated by multiplying the DO concentration by 2L. The initial amount of gas-phase  $O_2$  was calculated using the atmospheric  $O_2$  concentration (20.9%) and the volume of headspace without the gas bag (2125 mL). After the reactions with added  $CaO_2$  or  $H_2O_2$  were complete, the amount of aqueous-phase  $O_2$  was again determined by multiplying the post-reaction DO concentration by 2L. The gas-phase release of  $O_2$  was calculated from the  $O_2$  in the gas sampling bag, using a headspace volume of 3125 mL (i.e., 2125 mL + 1 L from the gas bag).

### 3. Results and discussion

# 3.1. Yield of $H_2O_2$ from CaO<sub>2</sub> dissolution at different pH values

Fig. 1 shows the release of  $H_2O_2$  with time in the reactors from dissolution of  $CaO_2$  for the different pH values tested.

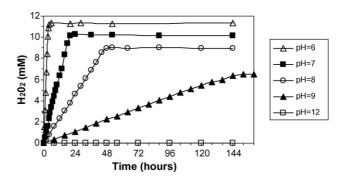



Fig. 1. Release of  $H_2O_2$  from a 0.2% (w/v) slurry of  $CaO_2$  in water during the first 160 h at the various pH values tested. For pH 12–13,  $CaO_2$  dissolution had not reached completion after 160 h.

| рН    | H <sub>2</sub> O <sub>2</sub> yield <sup>a</sup><br>(mmol) | $\%H_2O_2$ yield <sup>b</sup> | %O <sub>2</sub> yield <sup>c</sup> | Increase in temperature (°C) | Time required for dissolution |
|-------|------------------------------------------------------------|-------------------------------|------------------------------------|------------------------------|-------------------------------|
| 6     | 22.75                                                      | 82                            | 18                                 | 8.2                          | 4 h                           |
| 7     | 20.53                                                      | 74                            | 26                                 | 3.7                          | 20 h                          |
| 8     | 18.04                                                      | 65                            | 35                                 | 1.8                          | 52 h                          |
| 9     | 13.06                                                      | 47                            | 53                                 | 0.7                          | 6 days                        |
| 12-13 | 0                                                          | 0                             | 100                                | 0                            | 62 days                       |

The H<sub>2</sub>O<sub>2</sub> yield from a 0.2% (w/v) slurry of CaO<sub>2</sub> in water, the increase in temperature, and the time required for complete CaO<sub>2</sub> dissolution at the pH values tested

<sup>a</sup> From the final aqueous  $H_2O_2$  concentration measured (i.e., mM × 2L).

Table 2

 $^{b}\,$  Based on a 100% theoretical yield of 27.76 mmol  $H_{2}O_{2}$  from the 2 g CaO\_{2} added.

<sup>c</sup> Calculated assuming that the CaO<sub>2</sub> not released as H<sub>2</sub>O<sub>2</sub> was released as O<sub>2</sub>.

Table 2 lists the % yield of  $H_2O_2$ , the associated increase in temperature and the time required for complete CaO<sub>2</sub> dissolution. Complete dissolution of the CaO<sub>2</sub> in the reactors was verified by adding concentrated HCl to a sample to reduce the pH to 2 and then measuring  $H_2O_2$  concentration. No increase in  $H_2O_2$  concentration after acidification indicated that all the CaO<sub>2</sub> had been dissolved. Although O<sub>2</sub> was not measured in these studies, it can be assumed that any CaO<sub>2</sub> not converted to  $H_2O_2$  was released directly as O<sub>2</sub> [20]. The O<sub>2</sub> yield listed in Table 2 was calculated using this assumption. The continuously monitored pH data are not shown in Fig. 1 because the buffer solutions maintained the target pH throughout CaO<sub>2</sub> dissolution. The pH of the unbuffered CaO<sub>2</sub> remained between 12 and 13.

It is clear from Fig. 1 and Table 2 that the yield of  $H_2O_2$ and the dissolution rate of CaO<sub>2</sub> increased with decreasing pH. Unbuffered CaO<sub>2</sub> (pH = 12-13) had no measurable H<sub>2</sub>O<sub>2</sub> production. Although only the first 160 h of data were shown in Fig. 1, unbuffered CaO<sub>2</sub> required more than 2 months to dissolve completely. This is consistent with rates of O<sub>2</sub> release in soils with unbuffered CaO<sub>2</sub> reported in the bioremediation literature [24,25]. In contrast, CaO<sub>2</sub> was dissolved within 4 h at pH 6, and within 52 days at pH 8. This is consistent with the findings of Ndjou'ou and Cassidy [19], who showed that a CaO<sub>2</sub>-based oxidant buffered at pH 8 was exhausted within 2 days in well-mixed soil slurries. Higher rates of CaO<sub>2</sub> dissolution also resulted in a greater temperature increase, because the dissolution of  $CaO_2$  is exothermic. The maximum temperature increase measured was 8.2 °C for pH 6. The temperature maxima decreased with increasing pH, despite the fact that disproportionation increased with increasing pH. This apparent inconsistency can be explained by the slower CaO<sub>2</sub> dissolution rate at increasing pH, which allowed more time for heat generated via exothermic reactions to escape from the reactor walls. The H<sub>2</sub>O<sub>2</sub> released in these studies was stable because there was nothing added to the reactors to catalyze its decomposition (e.g., Fe and organic compounds). The % yield of  $H_2O_2$  decreased from 83% of the theoretical maximum (27.76 mmol) at pH 6 to 47% at pH 9, and was zero with unbuffered CaO<sub>2</sub>. Values of pH lower than 6 were not tested in these studies, because the purpose was to investigate the use of CaO<sub>2</sub> for MF (i.e., quasineutral pH) reactions. Moreover, the cost of MF-ISCO increases with decreasing pH because of increased buffer requirements (Table 1).

# 3.2. Scavenger studies with 2-propanol to verify •OH-mediated PCE oxidation

Fig. 2 shows the results of the study using CaO<sub>2</sub> at pH 8 to oxidize PCE with and without a •OH scavenger (2-propanol). A control reactor that received only PCE was also maintained for comparison. The other two reactors received PCE along with CaO<sub>2</sub>, Fe(III), and EDTA, and one of these also received 2propanol. The dose of CaO<sub>2</sub> was the same as in the previous studies (4 g). The dose of PCE in all three reactors was 6 mmol (3 mM, or 500 mg/L), and the dose of 2-propanol was 30 mM. Using 2-propanol was based on its effectiveness as a scavenger of •OH [26,28,29]. Analyses done at the end of the experiments (60 h) verified that no CaO<sub>2</sub> and no measurable amount of unreacted H<sub>2</sub>O<sub>2</sub> remained in the MF reactors.

Fig. 2 shows that in the MF reactor without 2-propanol PCE was nearly completely removed (99%) within 52–60 h. This is consistent with the time required for CaO<sub>2</sub> dissolution at pH 8 in the previous studies (Fig. 1, Table 2). Extraction and analysis of the ORBO<sup>®</sup> tubes showed that only 2% (0.12 mmol) of the PCE removed was due to volatilization. Concentrations of Cl<sup>-</sup> in this reactor increased simultaneously with PCE removal, indicating that PCE was mineralized. The final Cl<sup>-</sup> concentration was approximately 11 mM, resulting in a ratio of 3.7 mmol Cl<sup>-</sup> released/mmol PCE oxidized. This is similar to molar ratios observed by Ndjou'ou et al. [26] for MF oxidation of PCE in soils using liquid H<sub>2</sub>O<sub>2</sub>. The amount of PCE oxidized (5.83 mmol,

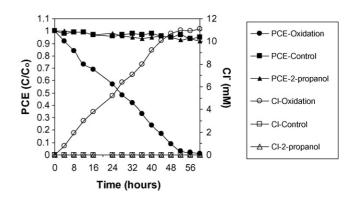



Fig. 2. PCE removal and Cl<sup>-</sup> release with time in a control with no oxidants, and in reactors with CaO<sub>2</sub>-based MF chemistry with and without a •OH scavenger (2-propanol). The conditions were pH = 8, CaO<sub>2</sub> dose = 0.2% (w/v), PCE dose = 3mM, 2-propanol dose = 30 mM.

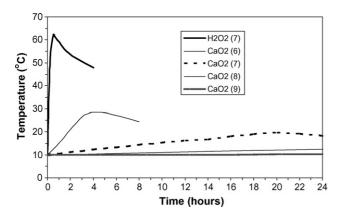



Fig. 3. Temperature variations with time in the reactors promoting MF oxidation of PCE with liquid  $H_2O_2$  at pH 7 and with CaO<sub>2</sub> at pH 6, 7, 8, and 9. The dose of liquid  $H_2O_2$  was 13.88 mM and the CaO<sub>2</sub> dose was 0.2% (w/v).

or 97%) was obtained by subtracting the mmol volatilized from the total mmol removed. In contrast, the reactor with 2-propanol behaved like the control, showing no PCE removal except via volatilization (3%). This reactor also showed no measurable release of Cl<sup>-</sup>. These results indicate that the PCE oxidation in the reactor without 2-propanol was caused by •OH produced via reaction (1). These results, along with those of the previous study, also demonstrate that CaO<sub>2</sub> at quasi-neutral pH releases  $H_2O_2$  which participates in MF oxidation.

# 3.3. Comparing MF oxidation of PCE with $H_2O_2$ (pH = 8) and CaO<sub>2</sub> (pH = 6–9)

The performance of liquid  $H_2O_2$  (pH=7) and CaO<sub>2</sub> (pH=6–9) for MF oxidation of PCE was investigated. In the tables and figures, each reactor is denoted by the oxidant used followed by the pH in parentheses (e.g., CaO<sub>2</sub> (8) is used for the reactor with CaO<sub>2</sub> buffered at pH 8). Fig. 3 is a plot of temperature in the reactors during the first 24 h. Fig. 4 shows the total percentage of PCE removed in the reactors, and the percent volatilized vs. oxidized. Table 3 lists the increase in temperature, O<sub>2</sub> released, PCE removed via volatilization and oxidation, and calculated values of oxidant efficiency. The molar ratio of Cl<sup>-</sup> released to PCE oxidized is not listed, but ranged from 3.6 to 3.8 for all reactors, indicating PCE mineralization. The pH data are not shown because readings did not vary from the target pH.

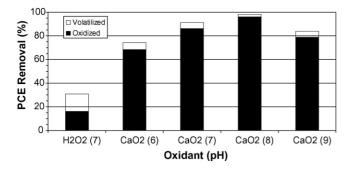



Fig. 4. Total PCE removal and percent volatilized vs. oxidized in the reactors promoting MF oxidation of PCE with liquid  $H_2O_2$  at pH 7 and with CaO<sub>2</sub> at pH 6, 7, 8, and 9. The CaO<sub>2</sub> concentration was 0.2% (w/v).

The reactors were closed and samples of the contents were taken only after reactions were complete. The reactor with  $H_2O_2$  was considered finished reacting after 40 min, and the reactors with CaO<sub>2</sub> were considered finished according to the time for CaO<sub>2</sub> dissolution in Table 2. Gas samples were first taken to measure O<sub>2</sub> and the post-reaction DO reading was taken, after which the reactors were opened for sampling. Analyses verified that no solid CaO<sub>2</sub> or  $H_2O_2$  remained.

Temperature readings (Fig. 3) are an indication of the rate and time of completion of reactions promoted by CaO2 and H<sub>2</sub>O<sub>2</sub>. Because CaO<sub>2</sub> dissolution, H<sub>2</sub>O<sub>2</sub> disproportionation, and •OH-mediated PCE oxidation are all exothermic, an increase in temperature indicates that one or more of these reactions is still occurring, and a decrease in temperature indicates that these reactions have ceased. The greater the rate of these reactions, the greater is the rate and extent of temperature increase. The temperature in the reactor with liquid H<sub>2</sub>O<sub>2</sub> increased to 62.3 °C within 35 min and then began to decrease because  $H_2O_2$  was depleted. In contrast, the temperature maxima in the reactors with CaO<sub>2</sub> were all less, and occurred later than with liquid  $H_2O_2$ . This indicates that  $CaO_2$  was able to maintain oxidation reactions over a longer period of time than liquid  $H_2O_2$ . The temperature maxima in the reactors with CaO<sub>2</sub>, and the time at which they occurred, decreased with increasing pH, which can be explained by decreasing rates of CaO<sub>2</sub> dissolution with increasing pH (Fig. 1). In fact, the temperature maxima in the reactors with  $CaO_2$  coincided with the time required for  $CaO_2$ dissolution at each pH value (Table 2). This illustrates how the rate of CaO<sub>2</sub> dissolution auto-regulates the rate of release of H2O2 and its participation in chemical reactions, and shows that the rate of MF oxidation using CaO<sub>2</sub> can be controlled simply by changing the pH.

Table 3 lists the maximum temperature increase in the reactors during MF oxidation of PCE. The exothermic reactions in the system (i.e.,  $CaO_2$  dissolution, disproportionation of  $H_2O_2$ , and MF oxidation) cannot be distinguished from temperature increase alone. However, temperature increase in the CaO<sub>2</sub>based MF reactors was over twice that for the corresponding pH in the CaO<sub>2</sub> dissolution experiments without MF chemistry (cf. Tables 2 and 3). The reason for the lower temperature maxima in the CaO<sub>2</sub> dissolution experiments (Table 2) is that the H2O2 released did not participate in MF reactions, and the chemical energy represented by the  $H_2O_2$  in the reactors was not released, as it was in the MF oxidation experiments. This shows that the energy released by MF oxidation and/or disproportionation was slightly more than twice that from dissolution of CaO<sub>2</sub>. Dissolution of CaO<sub>2</sub> is exothermic ( $\Delta G^{\circ} = -20.7 \text{ kJ/mol}$ ) and Fenton oxidation of organics releases a similar amount of energy [21,30]. However, by far the most exothermic reaction in MF systems is H<sub>2</sub>O<sub>2</sub> disproportionation ( $\Delta G^{\circ} = -119.2$  kJ/mol) [14]. A direct relationship was observed between temperature increase and  $O_2$  release (Table 3), a measure of disproportionation. The O2 released can be assumed to have come from decomposition of H<sub>2</sub>O<sub>2</sub>, or from O<sub>2</sub> released directly by CaO<sub>2</sub> that was never available as  $H_2O_2$ . It was assumed that there was no other source of  $O_2$ except CaO<sub>2</sub> or H<sub>2</sub>O<sub>2</sub> and that no O<sub>2</sub> was consumed by biodegradation. The first assumption is supported by the common use of

| Oxidant (pH)         | Increase in temperature (°C) | O <sub>2</sub> released (mmol) | Final [PCE]<br>(mM) | PCE removed (mmol) | PCE volatilized (mmol) | PCE oxidized <sup>a</sup><br>(mmol) | Efficiency <sup>b</sup> (mol<br>H <sub>2</sub> O <sub>2</sub> <sup>c</sup> /mol PCE) |
|----------------------|------------------------------|--------------------------------|---------------------|--------------------|------------------------|-------------------------------------|--------------------------------------------------------------------------------------|
| $H_2O_2(7)$          | 52.3                         | 12.82                          | 2.08                | 1.84               | 0.86                   | 0.98                                | 28.3                                                                                 |
| CaO <sub>2</sub> (6) | 18.5                         | 7.90                           | 0.77                | 4.46               | 0.36                   | 4.10                                | 5.5                                                                                  |
| CaO <sub>2</sub> (7) | 9.7                          | 7.22                           | 0.27                | 5.46               | 0.29                   | 5.17                                | 4.0                                                                                  |
| CaO <sub>2</sub> (8) | 4.8                          | 5.64                           | 0.06                | 5.88               | 0.12                   | 5.76                                | 3.1                                                                                  |
| CaO <sub>2</sub> (9) | 1.6                          | 5.15                           | 0.49                | 5.02               | 0.28                   | 4.74                                | 2.8                                                                                  |

Results from the comparative studies of MF oxidation of PCE using H<sub>2</sub>O<sub>2</sub> and CaO<sub>2</sub> at the various pH values tested

<sup>a</sup> PCE oxidized = total mmol PCE removed - mmol PCE volatilized.

<sup>b</sup> mmol H<sub>2</sub>O<sub>2</sub> consumed/mmol PCE oxidized.

Table 3

<sup>c</sup> mmol  $H_2O_2 = 27.76$  for  $H_2O_2$  (7), and for CaO<sub>2</sub> the  $H_2O_2$  yields from Table 2 were used.

 $O_2$  to measure  $H_2O_2$  disproportionation [11,13]. The second assumption is supported by the fact that; (1) PCE and EDTA are essentially non-biodegradable aerobically [31,32], (2) the reactors were not amended with microorganisms, and (3) the high  $H_2O_2$  concentrations would likely inhibit any microbial activity [14].

The greatest release of  $O_2$  (12.82 mmol) was observed in the reactor with liquid H<sub>2</sub>O<sub>2</sub> (Table 3). Vigorous bubbling was also observed with liquid H<sub>2</sub>O<sub>2</sub>, another sign of rapid O<sub>2</sub> release. High losses of H<sub>2</sub>O<sub>2</sub> to O<sub>2</sub> are characteristic of MF systems using liquid H<sub>2</sub>O<sub>2</sub>, even with large amounts of phosphate buffer [11,13,16]. This scavenging of  $H_2O_2$  is the major drawback of using liquid H<sub>2</sub>O<sub>2</sub> in MF-ISCO. The O<sub>2</sub> released from CaO<sub>2</sub> at pH 7 was 7.22 mmol, markedly less than with liquid  $H_2O_2$ , even though the pH and the phosphate buffer concentration were the same for both. All the CaO<sub>2</sub> reactors showed much less O<sub>2</sub> release than liquid H<sub>2</sub>O<sub>2</sub>, despite the fact that CaO<sub>2</sub> releases considerable O<sub>2</sub> without MF reagents (Table 2). In fact, the O<sub>2</sub> release from the CaO<sub>2</sub>-based MF systems decreased with increasing pH, even though the amount of O<sub>2</sub> released from CaO2 without MF reagents increases with increasing pH (Table 2), and despite the fact that the stability of  $H_2O_2$  decreases with increasing pH (Hess, 1995). This apparently paradoxical behavior can be explained by the decreasing rate of CaO<sub>2</sub> dissolution and H<sub>2</sub>O<sub>2</sub> release with increasing pH. These results show that CaO<sub>2</sub>, by maintaining lower levels of H<sub>2</sub>O<sub>2</sub>, can reduce disproportionation losses and that these losses can be controlled by varying the pH.

CaO<sub>2</sub> also achieved a much greater extent of PCE oxidation than liquid  $H_2O_2$ , at all the pH values tested (Table 3, Fig. 4). Fig. 4 illustrates the % removal of PCE, and the relative contribution of volatilization vs. chemical oxidation. Only 31% of the PCE was removed in the reactor with liquid  $H_2O_2$ , and nearly half of this was due to volatilization. This is not surprising, since liquid  $H_2O_2$  also resulted in the greatest release of  $O_2$  and the highest temperature, both of which encourage volatilization. For CaO<sub>2</sub>, a pH of 8 provided the greatest total removal of PCE (98%), and only 2% of this was due to volatilization, whereas 96% was attributed to chemical oxidation. These results confirm those obtained with CaO<sub>2</sub> at pH 8 in the °OH scavenging studies (Fig. 2), and show that CaO<sub>2</sub> performed optimally at pH 8.

The oxidant efficiency (mmol  $H_2O_2$  consumed/mmol PCE oxidized) was calculated directly for  $H_2O_2$  using the dose applied (27.76 mmol), and was estimated for CaO<sub>2</sub> using the

yield of H<sub>2</sub>O<sub>2</sub> measured at each pH value in the experiments on  $CaO_2$  dissolution (Table 2). It is not certain that the  $H_2O_2$ yield from CaO<sub>2</sub> was the same in the MF system as in the system without Fe, EDTA and PCE. However, attempts in previous experiments to directly measure  $H_2O_2$  released from CaO<sub>2</sub> (data not shown) showed that the H<sub>2</sub>O<sub>2</sub> was too short-lived to be measured. CaO<sub>2</sub> and H<sub>2</sub>O<sub>2</sub> were completely consumed in all the reactors. The values of oxidant efficiency in Table 3 are comparable to those reported by Crimi and Siegrist [33]. There was an inverse relationship between oxidant efficiency and loss of oxidant to O<sub>2</sub> released, because H<sub>2</sub>O<sub>2</sub> lost to disproportionation cannot form •OH and chemically oxidize PCE. Liquid  $H_2O_2$  showed an oxidant efficiency of 28.3 mmol  $H_2O_2$ consumed/mmol PCE oxidized. This is far greater than values obtained for CaO<sub>2</sub>, even though CaO<sub>2</sub> released considerably less than the theoretical maximum of  $27.76 \text{ mmol } H_2O_2$  (Fig. 1, Table 2), which was the dose of liquid H<sub>2</sub>O<sub>2</sub> used. This clearly shows that liquid H<sub>2</sub>O<sub>2</sub> was an inefficient MF oxidant compared with CaO<sub>2</sub> at any pH. The efficiency of CaO<sub>2</sub> as a MF oxidant increased with increasing pH, from 5.5 at pH 6 to 2.8 at pH 9, even though the yield of H<sub>2</sub>O<sub>2</sub> decreases with increasing pH (Fig. 1, Table 2). As with O<sub>2</sub> release, this trend can be explained by the lower rate of H<sub>2</sub>O<sub>2</sub> release from CaO<sub>2</sub> with increasing pH. The efficiency at pH 9 was slightly lower than at pH 8, even though pH 8 resulted in more PCE oxidation and less volatilization. This is a result of the lower yield H<sub>2</sub>O<sub>2</sub> for pH 9 (Table 2).

The results from these studies suggest that regulating the rate of availability of H<sub>2</sub>O<sub>2</sub> using CaO<sub>2</sub> increases the efficiency of MF oxidation relative to using liquid H<sub>2</sub>O<sub>2</sub> by reducing losses of  $H_2O_2$  to disproportionation. Liquid  $H_2O_2$  proved quite unstable and inefficient, even with a strong phosphate buffer. Furthermore, the results of these studies indicate that the optimal pH for CaO<sub>2</sub> in MF chemistry is 8. Below this pH the rate of release of H<sub>2</sub>O<sub>2</sub> from CaO<sub>2</sub> is too fast, causing excessive disproportionation (Fig. 3, Table 3). The resulting temperature increase and O<sub>2</sub> release encourage contaminant volatilization. Furthermore, maintaining a CaO<sub>2</sub>-based MF system at a pH below 8 requires considerably more phosphate buffer to be used (Table 1), which increases cost. As pH rises above pH 8, the amount of H<sub>2</sub>O<sub>2</sub> released from CaO<sub>2</sub> decreases rapidly (Fig. 1, Table 2), and CaO<sub>2</sub> becomes less effective for MF treatment, and more suitable for releasing O<sub>2</sub> for bioremediation. Ndjou'ou and Cassidy [19] showed that a commercially available CaO<sub>2</sub>-based MF oxidant at pH 8 was able to promote chemical oxidation and biodegradation of petroleum hydrocarbons.

# 4. Conclusions

Rapid decomposition of liquid H<sub>2</sub>O<sub>2</sub> in soils limits the applicability of modified Fenton (MF) chemistry for in situ chemical oxidation (ISCO). We conclude from these laboratory studies that  $CaO_2$  can be a more efficient source of  $H_2O_2$  for MF oxidation of PCE than liquid  $H_2O_2$ . The rate of release of  $H_2O_2$  from CaO<sub>2</sub> is auto-regulated by the rate of CaO<sub>2</sub> dissolution, which can be controlled by adjusting the pH. The rate of CaO<sub>2</sub> dissolution increases markedly with decreasing pH. In this study, 62 days were required for complete dissolution of unbuffered CaO<sub>2</sub> (pH = 12-13), whereas only 4 h were required when CaO<sub>2</sub> was buffered at pH 6. The yield of H<sub>2</sub>O<sub>2</sub> from CaO<sub>2</sub> also increases considerably with decreasing pH. The yield of  $H_2O_2$  from a 0.2% (w/v) slurry of technical grade CaO<sub>2</sub> (50% purity) increased from 47% (13.06 mmol) at pH 9 to 82% (22.75 mmol) at pH 6. Studies of MF treatment of PCE showed that CaO<sub>2</sub> at all pH ranging from 6 to 9 was a more efficient source of H<sub>2</sub>O<sub>2</sub> for MF oxidation of PCE than liquid H<sub>2</sub>O<sub>2</sub> at pH 7. Liquid  $H_2O_2$  showed excessive disproportionation to  $O_2$ , increasing temperature dramatically and volatilizing nearly as much PCE it oxidized. By releasing  $H_2O_2$  only upon dissolution, CaO<sub>2</sub> (at pH 6-9) achieved a much greater oxidant efficiency (mmol  $H_2O_2$  consumed/mmol PCE oxidized), and resulted in much less PCE volatilization and greater PCE oxidation than liquid H<sub>2</sub>O<sub>2</sub>. The optimal performance of CaO<sub>2</sub> was observed at pH 8, which is recommended for MF-ISCO applications. The ability of CaO2 at pH 8 to promote MF oxidation of PCE via the production of hydroxyl radicals was demonstrated in these studies.

# References

- [1] C. Walling, Fenton's reagent revisited, Acc. Chem. Res. 8 (1975) 125-131.
- [2] R.J. Watts, A.L. Teel, Chemistry of modified Fenton's reagent (catalyzed H<sub>2</sub>O<sub>2</sub> propagations-CHP) for in situ soil and groundwater remediation, ASCE J. Environ. Engineer 131 (2005) 612–622.
- [3] R.J. Watts, S.E. Dilly, Evaluation of iron catalysts for the Fenton-like remediation of diesel-contaminated soils, J. Hazard. Mater. 51 (1996) 209–224.
- [4] S.-H. Kong, R.J. Watts, J.-H. Choi, Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide, Chemosphere 37 (1998) 1473–1482.
- [5] C.K.J. Yeh, H.-M. Wu, T.C. Chen, Chemical oxidation of chlorinated nonaqueous phase liquid by hydrogen peroxide in natural sand systems, J. Hazard. Mater. B96 (2003) 29–51.
- [6] W.P. Kwan, B.M. Voelker, Rates of hydroxyl radical generation and organic oxidation in mineral-catalyzed Fenton-like systems, Environ. Sci. Technol. 37 (2003) 1150–1158.
- [7] Y. Sun, J.J. Pignatello, Chemical treatment of pesticide wastes: Evaluation of Fe(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH, J. Agric. Food Chem. 40 (1992) 332–337.
- [8] K. Nam, W. Rodriguez, J.J. Kukor, Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction, Chemosphere 45 (2001) 11–20.
- [9] Environmental Security Technology Certification Program (ESTCP), Technology status review: in situ oxidation, ESTCP, Arlington, Virginia, USA, 1999.

- [10] F. Buda, B. Ensing, C.M. Gribnau, E.J. Baerends, O<sub>2</sub> evolution in the Fenton reaction, Chem. Eur. J. 9 (2003) 3436–3444.
- [11] R.J. Watts, M.K. Foget, S.H. Kong, A.L. Teel, Hydrogen peroxide decomposition in model subsurface systems, J. Hazard. Mater. B69 (1999) 229–243.
- [12] P. Xu, G. Achari, M. Mahmoud, R.C. Joshi, Application of Fenton's reagent to remediate diesel contaminated soils, ASCE Practice Periodical Haz., Toxic Radioactive Waste Manage. 10 (2006) 19–27.
- [13] G. Chen, G.E. Hoag, P. Chedda, F. Nadim, B.A. Woody, G.M. Dobbs, The mechanisms and applicability of in situ oxidation of trichloroethylene with Fenton's reagent, J. Hazard. Mater. B87 (2001) 171–186.
- [14] W.T. Hess, Hydrogen peroxide, in: Kroschwitz, Howe-Grant (Eds.), Kirk–Othmer Encyclopedia of Chemical Technology, fourth ed., Wiley Publishing, New York, 1995, pp. 961–995.
- [15] W.E. Schumb, C.N. Stratterfield, R.L. Wentworth, Hydrogen Peroxide, Van Nostrand Reinhold, New York, 1955.
- [16] R. Baciocchi, M.R. Boni, L. D'Aprile, Application of H<sub>2</sub>O<sub>2</sub> lifetime as an indicator of TCE Fenton-like oxidation in soils, J. Hazard. Mater. B107 (2004) 97–102.
- [17] R.E. Hinchee, D.C. Downey, P.K. Aggarwal, Use of hydrogen peroxide as an oxygen source for in situ biodegradation. Part I. Field studies, J. Hazard. Mater. 27 (1990) 287–299.
- [18] B.W. Bogan, V. Trbovic, J.R. Paterek, Inclusion of vegetable oils in Fenton's chemistry for remediation of PAH-contaminated soils, Chemosphere 50 (2003) 12–21.
- [19] A.C. Ndjou'ou, D.P. Cassidy, Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil, Chemosphere 65 (2006) 1610–1615.
- [20] I.I. Vol'nov, Peroxides, Superoxides, and Ozonides of Alkali and Alkaline Earth Metals, Plenum Publishing, New York, NY, USA, 1966.
- [21] M. Königstein, C. Catlow, A. Richard, Ab Initio quantum mechanical study of the structure and stability of the alkaline earth metal oxides and peroxides, J. Solid State Chem. 140 (1998) 103–115.
- [22] T. Schmidtke, D. White, C. Woolard, Oxygen release kinetics from solid phase oxygen in Arctic Alaska, J. Hazard. Mater. B64 (1999) 157–165.
- [23] M. Arienzo, Degradation of 2,4,6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound, Chemosphere 40 (2000) 331–337.
- [24] D.M. White, R.L. Irvine, C.W. Woolard, Soil column studies on solid peroxides in bioremediation, J. Hazard. Mater. 57 (1998) 71–78.
- [25] D.P. Cassidy, R.L. Irvine, Use of calcium peroxide to provide O<sub>2</sub> for contaminant biodegradation in a saturated soil, J. Hazard. Mater. B69 (1999) 25–39.
- [26] A.C. Ndjou'ou, J. Bou-Nasr, D.P. Cassidy, The effect of Fenton reagent dose on co-existing chemical and microbial oxidation in soil, Environ. Sci. Technol. 40 (2006) 2778–2783.
- [27] P.M. Bradley, J.E. Landmeyer, Low-temperature MTBE biodegradation in aquifer sediments with a history of low seasonal ground water temperatures, Ground Water Monit. Rev. 26 (2006) 101–105.
- [28] G. Buxton, C.L. Greenstock, W. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (\*OH/\*O<sup>-</sup>) in aqueous solution, J. Physical Chem. 17 (1988) 513–886.
- [29] J. Howsawkeng, R.J. Watts, D.L. Washington, A.L. Teel, T.F. Hess, R.L. Crawford, Evidence for simultaneous abiotic–biotic oxidations in a microbial-Fenton's system, Environ. Sci. Technol. 35 (2001) 2961–2966.
- [30] S. Wadley, T.D. Waite, Fenton Processes, in: S. Parsons (Ed.), Advanced Oxidation Processes for Water and Wastewater Treatment, IWA Publishing, London, 2004.
- [31] T.M. Vogel, C.S. Criddle, P.L. McCarthy, Transformations of halogenated aliphatic compounds, Environ. Sci. Technol. 21 (1987) 722–736.
- [32] B. Nortemann, Biodegradation of EDTA, Appl. Microbiol. Biotechnol. 51 (1999) 751–759.
- [33] M.L. Crimi, R.L. Siegrist, Factors affecting effectiveness and efficiency of DNAPL destruction using potassium permanganate and catalyzed hydrogen peroxide, ASCE J. Environ. Engineer 131 (2005) 1724–1732.